
A Run-time Hardware Routing
Implementation for CGRA Overlays

Mateus Pinto da Silva1 Maria Dalila Vieira1 Ricardo S. Ferreira2 José Augusto M. Nacif1
1Science and Technology Institute, Universidade Federal de Viçosa, Florestal, Minas Gerais, Brasil

2Informatics Departament, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
{mateus.p.silva, maria.d.vieira, ricardo, jnacif}@ufv.br

Abstract—Accelerators became a wide-reaching solution for
increasing computing systems’ performance. However, they bring
the trade-off between programming facility versus energy ef-
ficiency. FPGAs are highly energy-efficient accelerators, but
complex to program. CGRA Overlays offers a more straightfor-
ward programming interface for FPGA and can use dataflows
graphs as input. Mapping a dataflow graph requires three NP-
Completes challenges: scheduling, placement, and routing. We
present a greedy finite state machine hardware algorithm for
CGRA Routing. Our goal is to produce a viable solution for a
reliable FPGA use. Our routing approach reduces execution time
and increases portability with a low area overhead. We achieve
3x speedup than a high-end commercial CPU, being able to route
86% of the graph edges on the CGRAME benchmarks.

Index Terms—CGRA routing, reconfigurable architectures,
FPGA accelerators

I. INTRODUCTION

In recent years, with the rapid developments in society
and technology, the demand for computer performance has
continuously increased with the emergence of more complex
challenges every day. In this context, heterogeneous platforms,
consisting of one (or multiple) CPU(s) co-working with some
accelerator has become a wide-reaching solution. However,
there is a crucial trade-off in computer accelerators: program-
ming facility versus energy efficiency [1].

Among computer accelerators the FPGA (Field-
Programmable Gate Array) architecture has high energy
efficiency, and it is run-time reconfigurable, which guarantees
flexibility. On the other hand, it requires hardware knowledge
of the programmer, and plenty of time to code, synthesize,
and debug [2], [3]. CGRA (Coarse-Grained Reconfigurable
Architecture) is a low granularity implementation of FPGAs,
which decreases programming complexity and synthesize
costs of the architecture, keeping most of the efficiency and
the flexibility. However, there are few commercial chips
available. CGRA can also be an overlay for FPGA, which
reduces granularity [4], [5].

Mapping an algorithm into a CGRA requires three NP-
complete challenges: scheduling, placement, and routing.
Scheduling could be implemented by using time-multiplexing
and/or fully pipelined [6]. Placement maps the data-flow
nodes onto the architecture processing elements or functional
units [7]. Routing is connecting data-flow nodes in the plat-
form, with respect to the restrictions on the chosen CGRA
layer. One example is the number of bypass connections in

Processing Elements (PEs). Assuming that N is the gridline
size, we can route 86% of the edges in linear time for a
problem with an O(2N ) complexity, using a replicable state
machine that repeatedly tries to route the graph, marking the
input as resolvable or non-resolvable in linear time.

We propose a hardware approach greedy finite state machine
routing algorithm for CGRAs. Our state machine runs in linear
time and can route most CGRA placements. Thus, we intend
to try repeatedly routing until we find a solvable one in a
set of finite Placement attempts, which makes our solution
possible to replicate, using a strategy of division and conquest.
Based on this, we improved the possibility of reconfiguring
the CGRA in run-time without requiring any changes to the
front-end compiler. We perform the entire routing process
is inside the chip. The main contributions of this work are
(1) Hardware-based and incremental architecture-independent
CGRA routing; (2) Dynamic CGRA overlay improvement.
Any FPGA system can include a CGRA overlay. In this case,
it is possible to place the entire mapping algorithm on the
chip, not just the routing. There will be an area overhead for
the algorithm. However, the creation and transfer of the data
flow configuration is faster, in addition to CPU independent,
keeping all FPGA costs inside the chip.

We organize the remaining of the paper as follows: Section
II explains the CGRA architectures and data-flow routing
problem. Section III presents the related work. Section IV
presents our routing approaches in more detail. In Section V,
we present and discuss the results. Finally, in Section VI, we
close our remarks and propose future work.

II. BACKGROUND

Fig. 1. (a) PE with B configuration; (b) Mesh CGRA.

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



A CGRA is an array of processing elements (PEs) intercon-
nected by a network [2], [3]. These PEs are reconfigurable at
the word level, while FPGA’s standard cells are reconfigurable
at the gate level. This decrease in granularity makes the
mapping simpler. However, it sacrifices the flexibility of the
chip. A PE consists of one Arithmetical Logic Unit (ALU),
some bypasses, and configuration memory, as Figure 1(a)
shows.

A processing element can communicate only with its neigh-
bors. This local connection is shown in green in Figure 1.
However, for several graphs, communication between non-
neighboring PEs is necessary and can be achieved using
the bypass structure, which passes a connection through the
PE (s), as shown in orange in Figure 1. A bypass is a
hardware structure that temporarily stores the input value of a
neighboring PE and sends it to other adjacent PE (s), either to
its ALU (s) or even bypass (es). The more bypass a PE has, the
easier it is to route the CGRA, but the PE occupies more area
of the FPGA, decreasing the number of PEs that the CGRA
Overlay can have. In our example, we use one bypass structure.
The difference between the order of the algorithm graph and
the number of CGRA PEs results in unused ALUs, which
can function as a bypass structure using a move function,
facilitating routing. An architecture-independent algorithm for
CGRA mapping must consider or be independent of the bypass
structure per PE quantity.

All data transfers between the main memory and the chip
occur in the CGRA borders, and the source and destination
nodes must be there [2], [3]. It is possible, as well, to put
constants on the PE registers before the algorithm execution, in
both ALU and bypass registers. The CGRA can run the same
algorithm with multiple data, similar to a Single Instruction,
Multiple Data processor, and achieve higher performance
working this way. It is possible to change the algorithm on-
the-fly depending on mapping time. An FPGA system could
consist of a complex CGRA Overlay, one or multiple placing
units, and multiple routing units, as Figure 1(b) shows, to make
the mapping faster and keeps it cost inside the FPGA.

III. RELATED WORK

Maurice Hanan et al. [6] aim to use spanning tree, Steiner
tree, and special trees which satisfy a particular degree re-
quirement. That approach uses Prism, Kruskal, and other
algorithms to find routing for each graph node. It works on
most architectures. However, it is implemented in software,
because implementing in hardware is out of the scope of
this paper. Our solution is simpler and suitable for hardware
implementation, being a replicable low resource-consumption
finite state machine.

Zhongyuan Zhao et al. [7] use a specific CGRA Overlay
and does the mapping in the same operation, achieving effi-
ciency in balanced algorithm graphs. Nevertheless, it is not
an architecture-independent solution, working only to restrict
CGRAs. Our algorithm works whatever is the target CGRA,
just requiring two constants about the chip: the grid size and
the max bypasses per PE.

Stephen Friedman et al. [8] employ the heuristic Quick-
Route aside with PathFinder to solve CGRA routing. Be-
sides, it is generic enough to be implemented as architecture-
independent, although it is not simple for a hardware im-
plementation [6]. Both works implement software-based ap-
proaches. Our solution is hardware-implemented, guarantee-
ing high speed because it is high frequency. We present a
low resource-consumption high clock frequency finite state
machine for CGRA routing that is architecture-independent
implemented in hardware, working in all CGRA.

IV. ARCHITECTURE-INDEPENDENT GREEDY ROUTING
APPROACH

When using a CGRA, the compiler generates the data-flow
graph from a programming language source code, as Fig-
ure 2(a) shows. After that, we send the graph to the placement
unit inside the FPGA. So the placement unit performs one
placement attempt. If the algorithm graph has an edge between
two neighbors PEs, it will be routed in the placement, as
presented in Figure 2(b). These edges are called trivial. Then,
the routing unit tries to route in linear time. If this routing
possible, we achieve the process end, as Figure 2(c) shows,
so we have the CGRA network. Otherwise, we must generate
another placement. The routing can be easier, harder, or even
unsolvable based on placement results.

Fig. 2. (a) Graph generation; (b) Placement done; (c) Routing done.

We primarily developed our routing finite state machine
in C Language, to make the debugging and testing easier.
It is possible to count clock cycles in this implementation.
However, the clock frequency and the FPGA area is only
measurable using a hardware description language. We have
written one hardware implementation in System Verilog HDL
and generated two others from our version with imperative
programming language using the High-Level Synthesis Tools
Legup, a software that can convert C Language code to
hardware description language code.

Routing a graph edge consists of finding a viable path
through PEs bypasses, inputs, and outputs from source to the
destination node. For every PE input, there must be a PE
output connected to it. Because of that, a CGRA abstraction
for routing can consider just one of them. We arbitrarily chose
using PE’s outputs. Our machine abstracts the CGRA grid in
an array of elements with four booleans representing the four
outputs from PEs and one integer for the number of used
bypasses. The array size is the grid size, which is one of the



two constants required by our FSM (Finite State Machine).
The other one is the max bypass quantity per PE, including the
free ALUs to be used with the move function. The input is the
graph edge list and the pre-filled grid, with information about
used outputs from trivial edges and used ALUs by placement.

Algorithm 1 Pseudo-Code for the Routing Algorithm
0: function IsAdvancePossible(Orientation, Source)
0: if IsOutputFilled(Source) or (UsedBypass == MaxBypass and

isBypassRequired()) then
0: return False;
0: else
0: return True;
0: end if
0: function Advance(Orientation, Source)
0: FillOutput(Source);
0: UsedBypass++;
0: function main()
0: Source,Destination ← GetNextEdge()
0: while NextEdge is not (0, 0)(0, 0)] do
0: Source,Destination ← GetNextEdge()
0: Modified ← False
0: while Souce != Destination do
0: while IsAdvancePossible(X,Source) do
0: Advance(X,Source)
0: Modified ← True
0: end while
0: while IsAdvancePossible(Y, Source) do
0: Advance(Y, Source)
0: Modified ← True
0: end while
0: if !Modified then
0: EraseEdge(Source, Destination)
0: Break
0: end if
0: end while
0: end while
0: =0

Algorithm 1 shows our routing pseudocode. The first outer
loop represents the iteration through all graph edges waiting
for routing. The Modified variable is just a flag for marking if
the algorithm made any movement, started with the false value.
First, the algorithm reads a graph edge. The second outer loop
tests if the Source edge is already in the Destination. If it is
not, the routing unit moves it. First, we arbitrarily chose to
start moving the edge on the x-axis while it is possible.

We define this possibility by checking the occupation of
the outputs and bypass structures. We cannot perform the
movement if the desired output is not available, or the number
of occupied bypasses is equal to the max. Otherwise, the
movement can happen. The first and the last movements are
the only ones that do not use bypasses because we perform
the connection directly in PE’s ALU. The algorithm does the
same on the y-axis. In our debugging version, if the algorithm
did not move from the source, that graph edge will be entirely
removed from the CGRA, and the next edge will be requested.

We propose a sixteen states hardware approach greedy
finite state machine to implement this algorithm, as shown
in Figure 3. In a high-level, the NX State, the FSM request
the next edge. If it is a reflexive one, the algorithm jumps
to END, which means it finishes. The X state walks with
the node in the x-axis while there are free bypasses and free
outputs or if the connection is horizontally aligned. Y state

Fig. 3. A high-level description of our FSM.

does the same but on the y-axis. Test state checks if the
current node is the destination one. If it is, the connection
was successful. Otherwise, it proceeds to the Loop stage. The
loop stage is responsible for stairway moves. The machine
calls X state again the routing does any movement since the
last X state. Otherwise, it will jump to the Blacklist (BL) state.
The Blacklist state recursively clear all node attempts.

The Blacklist state is also just for debugging purposes. In
our implementation, we used it for calculating non-routed
edges. In a commercial version, there is no need for it,
since when it is impossible to route an edge, the algorithm
would abort and call for another placement, so the condition
for calling Blacklist state would call End State. Also, it is
possible to implement a Prefetch state before the NX state for
caching the next input edge, costing some area in the chip, but
making the algorithm execution faster by overlapping memory
accesses.

V. EXPERIMENTAL RESULTS

We tested our solution using our handwritten hardware
description code and Legup output on the cutting-edge Intel
Arria10 FPGA. Unfortunately, due to the lack of such an
accelerator in the literature, we used the commercial Intel
High-end CPU I7-7700HQ. We reached 200MHz on the FPGA
using the handwritten code. The Legup code reaches the same
frequency. However, the number of cycles was, on average,
10x higher, in addition to several errors in the compilation,
making the tool practically unfeasible for our application.
The hardware implementation achieves, in average, 3.8x the
performance of the CPU time.

All of the runtimes tests were done using the benchmarks
from CGRAME. The Table II shows the results. We produced
great routed edges results for a very small machine. The more
is the number of Empty ALUs, the algorithm can take more
route possibilities because of the increased number of bypass
structures (see Section II), observed in the increased number of
routed edges. The clock cycle quantity is directly related to the
number of non-trivial graph edges. This shows the importance
of a precise Placement Algorithm.



TABLE I
FSM TIME RESULTS ON CGRAME BENCHMARKS.

Benchmark
names

Clock
cycles

CPU
time (ms)

Verilog
handwritten
time (ms)

Legup
time (ms)

accumulate 117,24 1,89 0,59 5,86
cap 204,80 2,50 1,02 10,24
conv2 103,50 1,40 0,52 5,18
conv3 171,00 2,10 0,86 8,55
mac 70,90 2,00 0,35 3,55
mac2 170,40 2,10 0,85 8,52
matrixmultiply 84,30 1,40 0,42 4,22
mults1 212,40 2,20 1,06 10,62
simple2 97,20 1,20 0,49 4,86
sum 30,80 1,50 0,15 1,54
twoloops1 109,20 1,40 0,55 5,46
twoloops2 80,20 2,50 0,40 4,01

TABLE II
FSM EDGE RESULTS ON CGRAME BENCHMARKS.

Benchmark
Names

Empty
ALUs

Edges CGRA
UsageTrivial Routed

Y N Y N
Accumulate 7,00 12,10 9,90 87,27% 12,73% 22,60%
Cap 2,00 14,40 14,60 80,34% 18,97% 30,20%
Conv2 0,00 9,00 9,00 87,78% 12,22% 32,81%
Conv3 0,40 14,20 12,80 83,70% 16,30% 29,20%
Mac 5,00 6,10 6,90 90,77% 9,23% 20,78%
Mac2 1,00 14,70 15,30 79,33% 16,33% 27,20%
MatMultip 7,00 11,30 7,70 91,58% 8,42% 20,20%
Mults1 6,00 18,10 16,90 81,71% 18,29% 25,00%
Simple2 3,00 7,10 6,90 85,71% 14,29% 25,47%
Sum 2,20 4,10 3,90 95,00% 5,00% 19,44%
Twoloops1 0,00 8,50 9,50 81,11% 18,89% 25,31%
Twoloops2 7,00 14,20 6,80 90,48% 9,52% 21,00%

VI. CONCLUSION

We proposed a hardware approach greedy finite state ma-
chine routing algorithm for the CGRA mesh. We aim to
implement placement, routing, scheduling ad the CGRA layer
over the same FPGA. Thus, we can exploit the FPGA reconfig-
urability while we execute several instances of the mapping.
So we can achieve solutions each time near to the optimal
solution. Our solution is competitive because we achieve a
high number of routed edges with a small resource-consuming
finite state machine. We aim to replicate it for repeatedly try
the routing until we find one solvable in a finite grid set.
Besides, we stand out from the other works for implementing a
low resource-consumption high clock frequency architecture-
independent finite state machine CGRA routing, that require
information about the grid size and the max bypasses per
PE. Moreover, we offer a generic implementation that is
architecture-independent, working on all Mesh CGRAs.

As future work, we aim to adjust our hardware to the N-hop
architecture to be a more generic CGRA routing algorithm.
This architecture provides a direct connection between all pairs
of vertices with distance N+1 in the mesh. Furthermore, we
should improve our solution to detect obstacles and provide
alternative routes. Also, we intend to implement multicasting
that consists of the reuse of paths with the same origin node, to
use fewer CGRA resources, and route more graph edges. We

also aim to work with QuickRoute and PathFinder heuristics,
trying a simpler implementation of them to work on hardware,
and accelerate even more the CGRA routing process.

ACKNOWLEDGMENTS

We thank LegUp Computing for providing the evaluation
license for the commercial version of the tool. We also thank
CNPq, CAPES and FAPEMIG for the financial support and
the companies Intel and NVIDIA for access to their tools.

REFERENCES

[1] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding
performance differences of fpgas and gpus,” in 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2018, pp. 93–96.

[2] L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A survey
of coarse-grained reconfigurable architecture and design: Taxonomy,
challenges, and applications,” ACM Computing Surveys (CSUR), vol. 52,
no. 6, pp. 1–39, 2019.

[3] A. Podobas, K. Sano, and S. Matsuoka, “A survey on coarse-grained
reconfigurable architectures from a performance perspective,” arXiv
preprint arXiv:2004.04509, 2020.

[4] L. B. da Silva, F. Alves, J. A. Nacif, F. Passe, V. C. Vasconcelos, and
R. Ferreira, “Cgra harp: Virtualization of a reconfigurable architecture on
the intel harp platform.”

[5] L. B. D. Silva, R. Ferreira, M. Canesche, M. M. Menezes, M. D. Vieira,
J. Penha, P. Jamieson, and J. A. M. Nacif, “Ready: A fine-grained multi-
threading overlay framework for modern cpu-fpga dataflow applications,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 5s, pp. 1–20, 2019.

[6] Z. Zhao, W. Sheng, Q. Wang, W. Yin, P. Ye, J. Li, and Z. Mao, “Towards
higher performance and robust compilation for cgra modulo scheduling,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 9,
pp. 2201–2219, 2020.

[7] M. Hanan and J. M. Kurtzberg, “A review of the placement and quadratic
assignment problems,” Siam Review, vol. 14, no. 2, pp. 324–342, 1972.

[8] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and
S. Hauck, “Spr: an architecture-adaptive cgra mapping tool,” in Proceed-
ings of the ACM/SIGDA international symposium on Field programmable
gate arrays, 2009, pp. 191–200.


